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Effective rate equations for the overdamped motion in fluctuating potentials
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We discuss physical and mathematical aspects of the overdamped motion of a Brownian particle in fluctu-
ating potentials. It is shown that such a system can be described quantitatively by fluctuating rates if the
potential fluctuations are slow compared to relaxation within the minima of the potential, and if the position of
the minima does not fluctuate. Effective rates can be calculated; they describe the long-time dynamics of the
system. Furthermore, we show the existence of a stationary solution of the Fokker-Planck equation that
describes the motion within the fluctuating potential under some general conditions. We also show that a
stationary solution of the rate equations with fluctuating rates exists.
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I. INTRODUCTION

Thermally activated relaxation processes are an impor
mechanism for the dynamics of many physical, chemic
and biological systems. The diffusion of a Brownian partic
in a potential with several minima and barriers serves a
paradigm for such relaxation processes. The minima of
potential represent stable or metastable states of the sys
and the motion of the particle models the transition of
system from one state to the other and back. The most sim
example in this class of models is the problem of diffusi
over a single potential barrier pioneered by Kramers@1#. The
dynamics of the diffusion over a barrier is dominated by
characteristic time scale, which is given by the mean fi
passage time for the escape out of the minimum of the
tential. In a model with several minima and barriers, t
corresponding time scales are given by the inverse rates
the transition from one state to another.

Often one uses kinetic rate equations to describe the
namical properties of relaxation in chemical or biologic
systems. This description is clearly much simpler than
description of a Brownian particle in a potential. To calcula
rate coefficients, it is often sufficient to know some of t
properties of the potential energy surface, like barr
heights. In principle, if one knows the potential energy s
face, both descriptions are equivalent. One can calcu
static or dynamic properties of the system either using
Brownian particle in the potential or using the rate equatio

In many situations, the potential fluctuates due to so
external fluctuations, chemical reactions, or oscillatio
These fluctuations usually have a finite correlation tim
which corresponds to a nonthermal noise. The most sim
model with a fluctuating potential consists of a single flu
tuating barrier, where the height of the barrier fluctuates
tween two different values. Doering and Gadoua@2# investi-
gated such a simple model. They found a local minimum
the mean first passage time as a function of the barrier fl
tuation rate. This effect has been called resonant activa
and has been studied extensively@3–8#.

In principle it should be possible to use a description w
rate equations in the case with fluctuating barriers too. T
picture has already been suggested by Bier and Astumian@4#.
They showed that the long-time dynamics of a simple mo
1063-651X/2001/64~2!/021106~12!/$20.00 64 0211
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with a dichotomously fluctuating linear ramp can be d
scribed by kinetic rate equations if the potential fluctuatio
are not too fast. A similar observation was made in@9#,
where it was shown that noise induced stability of a me
stable state occurs in systems with a single fluctuating b
rier.

In the present paper we consider potentials ind dimen-
sions with several minima and barriers. Furthermore, we
low general potential fluctuations. For simplicity we assum
that the potential fluctuations can be parametrized by a sin
Markovian noise processz(t). Often it is argued that the
Markovian noisez(t) represents the cumulative effects
many weakly coupled environmental degrees of freedom
that case the central limit theorem can be applied andz(t)
becomes an Ornstein-Uhlenbeck process. On the other h
there are many realistic situations where the fluctuation
the potential is triggered by a single~or few! environmental
degree of freedom. The most simple case of a non-Gaus
fluctuating potential is a dichotomously fluctuating potent
as discussed, e.g., in@2#. But in many applications, the po
tential fluctuates not only between two different value
Since all these different cases are of interest, we will inv
tigate general noise processes. Furthermore, it is clear
there are always many possibilities to parametrize a fluc
ating potential by a Markovian noise process. This is anot
reason why it is useful to consider general noise process

A main purpose of the present paper is to show un
which conditions it is possible to pass from a model with
fluctuating potential to a set of rate equations with fluctuat
rates. We will discuss general models in arbitrary dimensi
and with potentials having several minima. The general p
ture we support by our calculations is that rate equations
be used if the potential fluctuations are slow compared to
relaxation within the minima of the potential and if the p
sitions of the minima of the potential do not fluctuate. T
long-time behavior of the model with a fluctuating potent
is then similar to that obtained using rate equations. T
fluctuation of the potential is mainly a fluctuation of the ba
rier heights. The potential fluctuations may be fast compa
to relaxation across the barriers of the potential.

After these remarks it is clear but important to menti
that the applicability of rate equations depends also on
quantities one is interested in. As long as one is intereste
©2001 The American Physical Society06-1
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ANDREAS MIELKE PHYSICAL REVIEW E 64 021106
stationary or quasistationary properties, rate equations y
good results. If one is interested in properties on time sc
of the order of or smaller than the relaxation within t
minima, rate equations cannot be applied.

Furthermore, we analyze systems with fluctuating rate
detail and derive effective rates~which do not fluctuate!. The
effective rates yield the relevant time scales for the long-ti
behavior of the system. They can be directly compared to
mean escape rates in the fluctuating potentials. Furtherm
they yield the stationary distribution, which can also be co
pared with results obtained directly by solving the Fokk
Planck equation with a fluctuating potential. The comparis
is easily done for simple, one-dimensional systems w
piecewise linear potentials. For such systems it is relativ
easy to solve the Fokker-Planck equation directly.

The paper is organized as follows. In the next section
discuss how a kinetic rate equation with fluctuating rates
be obtained starting from a Fokker-Planck equation with
fluctuating potential, and in which situations one can exp
it to be valid. We also show how one can derive effect
rates from the kinetic rate equation with fluctuating rat
The effective rates yield the characteristic time scales for
escape out of the minima of the fluctuating potential. T
general formula for the effective rates can be evaluated
special noise processes. This is done in Sec. III. The res
are used to compare the description of a system by effec
rates with the original Fokker-Planck equation. For our d
cussion the existence of a stationary solution of the Fokk
Planck equation with a fluctuating potential and the existe
of a stationary solution of a kinetic rate equation with flu
tuating rates is essential. Section III also contains the e
solution of the dichotomous two-state system and its der
tion. Some of the exact results have already been mentio
without derivation in@9#. In Sec. IV we show that the sta
tionary solutions of the rate equation with fluctuating ra
and of the Fokker-Planck equation with a fluctuating pot
tial exist under some general assumptions on the poten
This result is a generalization of a recent, similar result
Pechukas and Ankerhold@10#. Finally, in Sec. V, some pos
sible applications are mentioned and conclusions of our
sults are drawn. As a specific example we discuss how
results can be used to interpret experimental findings
membrane proteins.

II. DERIVATION OF EFFECTIVE RATE EQUATIONS

A. Noise processes and the Fokker-Planck equation

The overdamped motion of a particle in a fluctuating p
tential is usually described by a Langevin equation,

dxW

dt
5 fW~xW ,t !1A2TjW~ t !. ~1!

We have chosen the units such that the friction constan
unity. j(t) is a thermal~Gaussian white! noise, it satisfies

^jW (t)&50, ^ja(t)jb(t8)&5dabd(t2t8). fW(xW ,t)52¹V(xW ,t)
is the force of the fluctuating potential. We investigate si
ations where the potential tends to infinity foruxW u→` or
02110
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where the potential is defined in a finite domainV with
reflecting boundary conditions on the boundary]V. Let us
assume that the potential fluctuations can be parametrize
a single stochastic variablez(t), V(xW ,t)5V„xW ,z(t)…. It is
clear that such a representation is not unique. Instead ofz(t)
one can use any monotonic function ofz(t) to parametrize
V(x,t). Often one uses a simple linear ansatzV„x,z(t)…
5V0(x)1z(t)DV(x) with a dichotomous or an Ornstein
Uhlenbeck processz(t). As already mentioned in the Intro
duction, we want to investigate models for which the pote
tial fluctuations represent the effects of few environmen
degrees of freedom. Therefore we do not restrict ourselve
a linear ansatz or to special noise processes. The only
sumption we make is that the noise processz(t) can be de-
scribed using a Fokker-Planck equation for the probabi
distributionp(z,t),

]p~z,t !

]t
5Mzp~z,t !. ~2!

The right eigenfunctions of the generatorMz are denoted by
fn(z), the eigenvalues by2ln ,

Mzfn~z!52lnfn~z!, ~3!

wherel050, l1.0, ln>ln21 . f0(z) is the stationary dis-
tribution of the noise processz(t). We let fn(z)
5gn(z)f0(z). Then one has

E dzgn~z!gm~z!f0~z!5dn,m . ~4!

gn(z) are orthogonal functions with respect to the weig
function f0(z). For n5m this equation fixes the normaliza
tion of fn(z). The eigenvaluel15t21 determines the cor-
relation time of the noise processz(t). We already men-
tioned that the parametrization of the fluctuating potential
a stochastic variablez(t) is not unique. One can alway
choose a different parametrization. The final results shoul
course be independent of the parametrization. If one chan
the parametrization, the spectrum ofMz remains the same
but the right eigenfunctions are changed.

The motion of the overdamped particle in the fluctuati
potential can be described using the joint probability dis
butionr(xW ,z,t) for xW (t) andz(t). It obeys the Fokker-Planck
equation

]r~xW ,z,t !

]t
5¹W •@„¹W V~xW ,z!…1T¹W #r~xW ,z,t !1Mzr~xW ,z,t !.

~5!

V(xW ,z) must have the same properties as a function ofxW as
V(xW ,t). It must tend to infinity sufficiently fast whenuxW u
becomes large; or alternatively, we may define the Fokk
Planck equation on a finite, open domainV with reflecting
boundary conditions on the boundary]V. Furthermore we
6-2
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EFFECTIVE RATE EQUATIONS FOR THE OVERDAMPED . . . PHYSICAL REVIEW E64 021106
assume thatV(xW ,z) is finite for anyz out of the support of

f0(z). V(xW ,z) does not have any infinitely high potenti
wells insideV.

B. Rate equations

1. Rate equations for fixed potentials

Let us first briefly review the case of a potential that do
not fluctuate. The Fokker-Planck operator has the form

L5¹W •@~¹W V~xW !#1T¹W !. ~6!

Let us assume that the potentialV(xW ) hasN distinct minima
at the pointsxW i , i 50, . . . ,N21 and thatV(xW )→` for uxW u
→` sufficiently fast.L has one eigenvalue 0, the corr
sponding right eigenfunction is the stationary distributi
}exp@2V(xW)/T#. 2L is non-negative, i.e., all the other eige
values of2L are positive. Using a simple variational arg
ment, one can show that2L has at least (N21) eigenvalues
that behave like exp(2c/T) for small T. Let us divide the
entire spaceV in which the system is defined into subspac
V i . xW iPV j if and only if i 5 j , V iùV j5B if iÞ j . ø iV i
5V\(ø i]V i). ]V i denotes the boundary ofV i . The bound-
aries are chosen such thatnW i(xW )•¹W V(xW )50 for xWP]V i ,
wherenW i(xW ) is the normal vector to the boundary]V i at xW .
Such a division ofV is always possible. Depending on th
form of V(xW ) it may not be unique. Let us now introduc

subsetsṼ i,V i , which do not contain a small region clos
to the boundary ofV i , but which do contain the positionsxW i
of the minima together with a sufficiently large regio
around them. Letũ i(xW ) be a smooth function that is equal

unity if xWPṼ i and that vanishes ifxW¹V i . In V i \Ṽ i the
function ũ i(xW ) drops smoothly from 1 to 0. We assume th
sufficiently many derivatives ofũ i exist.

In a next step, we introduce L̂

5exp@V(xW)/(2T)#L exp@2V(xW)/(2T)#. L̂ is a Hermitian opera-
tor. It has the explicit form

L̂5T¹21
1

2
~¹W 2V!2

1

4T
~¹W V!2. ~7!

Clearly, L̂ has the same eigenvalues asL. exp@2V(xW)/(2T)# is
the ~un-normalized! eigenfunction ofL̂ to eigenvalue 0. Let
ĝi(xW )5Ci exp@2V(xW)/(2T)#ũi(xW), where Ci is chosen such
that *ddxuĝi(xW )u251. One has*ddxĝi(xW )ĝ j (xW )5d i , j . Let
L̂ i , j5*ddxĝi(xW )L̂ĝ j (xW ). These quantities vanish foriÞ j . For
i 5 j one obtains

L̂ i i 5
T

2
uCi u2E ddx¹W •@exp$2V~xW !/T%¹ũ i~xW !#. ~8!

Since ¹ũ i vanishes for xWPṼ i , L̂ i i contains a factor
exp(2DV̂i /T) where
02110
s
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DV̂i5 min
xPV i \Ṽ i

V~xW !2V~xW i !. ~9!

Let DV̂5miniDV̂i . Then this shows that2L̂ hasN eigenval-
ues decay at least as fast as exp(2DV̂/T) to zero whenT
tends to zero.

Let us now considerL restricted toV i but with reflecting
boundary conditions on]V i . With these boundary condi
tions 2L has one eigenvalue 0 and typically other eigenv
ues that are much larger than exp(2DV̂/T). These eigenval-
ues describe the time scale for a decay within the poten
well around the minimum atxW i . On the original domainV
one can therefore expect that2L has one eigenvalue 0 an
N21 eigenvalues that are of the order of exp(2c/T) and that
all other eigenvalues of2L are much larger ifT is suffi-
ciently small. Let us denote the smallestN eigenvalues of
2L by l i , i 50, . . . ,N21, l050, and the corresponding
right eigenfunctions bygi(xW ). Then, for time scales large
compared to the intrawell relaxation times of the poten
V(xW ), we can make the ansatz

r~xW ,t !5 (
i 50

N21

r i~ t !gi~xW ! ~10!

for the solution of the Fokker-Planck equation]r/]t5Lr.
This ansatz should describe the long-time behavior of
system quite well. It is valid on time scales being large co
pared to the intrawell relaxation times in the different pote
tial wells of the potential.ni(t)5*xPV i

ddxr(xW ,t) is the

probability to find the particle in the regionV i , i.e., close to
the minimum xW i . Let ni j 5*xPV i

ddxgj (xW ). One hasni(t)

5( jr j (t)ni j . For the derivative with respect to time on
obtains

dni

dt
5E

xPV i

ddxLr 5 (
j

r jE
xPV i

ddxLgj

52(
j

l jr jni j 5 (
k

r iknk , ~11!

where the matrixR5(r i j ) i , j 50, . . . ,N21 is given by R5
2N21LN. N is the matrix (ni j ) i , j 50, . . . ,N21 andL is a di-
agonal matrix with the entriesl j , j 50, . . . ,N21. The dif-
ferential equationdni /dt5(kr iknk is the rate equation for
this problem. By construction, the eigenvalues ofR are
2l i .

Unfortunately, the definition ofR is not useful for an ex-
plicit calculation. If one is able to solve the eigenvalue pro
lem of L, there is no need to describe the problem by a r
equation. The rate equation is useful in situations, where
not possible to obtain analytic results from the Fokk
Planck equation. Fortunately, approximate values for
ratesr i j often yield very good results. In the one-dimension
case the usual Kramers’ rate is sufficiently good.

By construction,R is equivalent to the Fokker-Planck op
eratorL projected onto the space of its eigenfunctions withN
6-3
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ANDREAS MIELKE PHYSICAL REVIEW E 64 021106
largest eigenvalues. This means that dynamical propertie
time scales corresponding to eigenvalues or larger can
well described byR. Properties on time scalesulNu21 or
smaller cannot be calculated usingR. lN sets the time scale
for relaxation within the potential wells.

2. Rate equations for fluctuating potentials

Under which conditions is it possible to describe a pro
lem with a fluctuating potential by rate equations? It is cle
that one must be able to defineni for a fluctuating potential.
This is possible if the stationary distribution is strong
peaked at the minimaxW i . But in general one can have
situation, where the positionsxW i of the minima fluctuate as
well. If this is the case, the probability distribution will no
necessarily be peaked. Let us discuss that using a sim
example: A one-dimensional dichotomously fluctuating p
tential.

For this example,z takes two values,61 with equal prob-
ability. Mz has the eigenvalues 0 and2t21. In the eigenba-
sis of Mz the potentialV(x,z) has the form

S ^V&~x! DV~x!

DV~x! ^V&~x!
D , ~12!

where ^V&(x)5@V(x,1)1V(x,2)#/2, DV(x)5@V(x,1)
2V(x,2)#/2. Let f (x)52d^V&(x)/dx, D f (x)5
2dDV(x)/dx. Let us calculate the stationary probabili
p0(x)5*dzr(x,z). The stationary joint probability distribu
tion can be written asr(x,z)5p0(x)f0(z)1p1(x)f1(z).
Inserting this into the stationary Fokker-Planck equat
yields

d

dx S f 1zD f 2T
d

dxD @p0~x!f0~z!1p1~x!f1~z!#

1t21p1~x!f1~z!50. ~13!

This yields two equations forp0(x) andp1(x) corresponding
to the two coefficients off0(z) andf1(z), which both have
to vanish. Eliminatingp1(x) yields a single equation fo
p0(x), which can be written as

F11t
d

dx S f 2T
d

dxD G~D f !21S f 2T
d

dxD p0~x!

1t
d

dx
D f p0~x!50. ~14!

This equation can be derived directly from the Fokk
Planck equation. ForT50 it can be solved explicitly. One
obtains

p0~x!5C
D f

f 22D f 2
expS 2

1

tE dx
f

f 22D f 2D . ~15!

The integrandf /( f 22D f 2) diverges at the minima ofV(x,
6). If the position of the minima does not change,p0(xW ) is
a sum ofd functions located at the minima with appropria
02110
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weights. With changing positions of the minima, the situ
tion becomes different. In that case the particle moves
tween the minima. The most simple example to illustrate t
is V(x,6)5 1

2 g6(x2x6)2, g6.0. Let x1.x2 . Then the
support of p0(x) is the interval@x2 ,x1#. For p0(x) one
obtains

p0~x!5CF 1

g1~x12x!
1

1

g2~x2x2!G
3~x12x!1/(2tg1)~x2x2!1/(2tg2) ~16!

with some normalization constantC. The distribution func-
tion p0(x) is not peaked atx6 . It is clear that for smallT
.0 one obtains a similar result. This simple example sho
that in a situation where the position of the minima depen
on z, the stationary distribution of the system is not nec
sarily peaked at the minima of the potential.

Let us now assume that the potentialV(xW ,z) has minima
at xW i and that the positionsxW i of the minima do not depend o
z. For a fixed potential, rate equations can be used for t
scales larger than the intrawell relaxation times. It is the
fore clear that for potential fluctuations being faster than
intrawell relaxation times, one cannot use rate equations
the potential fluctuations are slower than the intrawell rel
ation times, and if the position of the minima does not flu
tuate, one is in an adiabatic situation. The particle is able
follow the fluctuations of the potential as long as it sta
close to a minimum. This means that one can calculate
rates for fixedz. The rates become functions ofz. The system
is thus described by rate equations with fluctuating rates

dni

dt
5(

j
r i j „z~ t !…nj . ~17!

These rate equations are considerably simpler than
Fokker-Planck equation with a fluctuating potential. On t
other hand, the validity of these equations is not entir
clear. We used only heuristic arguments to obtain the r
equations. In the following section we will compare resu
obtained from the rate equations with results from t
Fokker-Planck equation. This allows us to show, in whi
range of parameters the rate equations can be used.

C. Elimination of z„t…

If one is interested in stationary properties or in the lon
time behavior of the system, it is useful to derive effecti
rates for the transition from one state to another. The eff
tive rates do not depend onz. They can be calculated b
eliminatingz(t). If the correlation timet of z(t) is small, the
elimination process is a standard elimination of a fast va
able. To lowest order int the effective rates are simply give
by the average of the ratesr i j (z). To derive effective rates
let us transform the rate equation

dnW

dt
5RnW ~18!
6-4
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into a Fokker-Planck equation for the joint probability de
sity p(nW ,z,t),

]p~nW ,z,t !

]t
5¹W nW•@RnW p~nW ,z,t !#1Mzp~nW ,z,t !. ~19!

Since ( ini51 for all t, p(nW ,z,t) contains a factord(( ini

21). To calculate average values fornW , it is sufficient to
consider the stationary case. Let

p~nW ,z!5p0~nW !f0~z!1 p̄~nW ,z! ~20!

where

E dz p̄~nW ,z!50, ~21!

E dNn p̄~nW ,z!50. ~22!

Let ^R&5*dz R(z)f0(z). The stationary Fokker-Planc
equation yields

¹W nW•@^R&nW p0~nW !#52¹W nWE dz RnW p̄~nW ,z! ~23!

and

p̄~nW ,z!52Mz
21¹W nWRnW @p0~nW !f0~z!1 p̄~nW ,z!#. ~24!

Here, Mz
21 is the generalized inverse, it obeysMz

21fn(z)
52ln

21fn(z) for n.0, Mz
21f0(z)50. Equation ~23!

yields

^R&nW p0~nW !52E dz RnW p̄~nW ,z!1 jW~nW ! ~25!

with ¹W nW jW(nW )50. Let ^nW &5*dNn nW p0(nW ). Since

E dNn jW~nW !5K dnW

dt L 50 ~26!

one has

^R&^nW &5(
l 50

` E dzE dNn~21! lRnW ~Mz
21¹W nWRnW ! l 11

3p0~nW !f0~z!

52(
l 50

` E dzE dNn~RMz
21! l 11RnW p0~nW !f0~z!.

~27!

The first line in Eq.~27! is obtained by solving Eq.~24!
iteratively and inserting the result in Eq.~25!. Integrating by
parts yields the second line. SinceR andMz do not depend
on nW , the integration overnW yields the averagênW &. The sum
over l gives finally
02110
E dz~12RMz
21!21Rf0~z!^nW &50. ~28!

The entries of the matrix

Reff5E dz~12RMz
21!21Rf0~z! ~29!

are the effective rates, the negative inverse of its diago
matrix elements are the mean escape times out of the stai.
The expansion in Eq.~27! can be viewed as a usualt expan-
sion. Expanding the right-hand side of Eq.~29! yields thet
expansion for the effective rates. But since (12RMz

21) is
positive definite, the right-hand side of Eq.~29! is well de-
fined for anyt. Whereas it is not possible to speak of a
effective barrier for larget @5#, it is possible to obtain effec-
tive rates. But, depending on the noise process and onR(z),
it cannot be excluded that the smallest nonvanishing eig
value ofReff tends to zero in the limitt→`. This may hap-
pen if the fluctuations of the barrier heights in the poten
can be arbitrarily large, so that infinite barrier heights occ
In that case the solution for^nW & has to be obtained from th
solution for finitet and the limitt→` has to be taken af-
terwards since Eq.~28! does not have a unique solution fo
t5`. As long as the eigenvalue 0 ofR(z) is nondegenerate
for all z in the support off0(z), the matrixReff has a non-
degenerate eigenvalue 0 and Eq.~28! has a unique solution
This is shown below in Sec. IV.

D. Applicability of effective rate equations

As we already discussed in Sec. II A, rate equations
scribe only properties on long-time scales. If one wants
investigate dynamical properties on characteristic time sc
of the order of the typical relaxation within a potential we
one cannot use rate equations. If one wants to study a sy
with a fluctuating potential that fluctuates fast~i.e., one uses
a time scale of the order of the typical relaxation within
potential well! one has to use the Fokker-Planck equatio
This is true for equations with fluctuating rates as well as
the effective rate equations we derived in the last section

Since in many applications details of the potential a
unknown, one often uses rate equations. Especially in
logical applications, e.g., for the description of membra
proteins, one usually uses rate equations. A typical exam
is the well-known paper by Petracchiet al. @11#, who studied
the effect of time dependent electric fields on membrane p
teins experimentally and used rate equations to interpret t
experimental findings. They were able to explain most
their results using rate equations and a very simple ansat
the rates. In their experimental studies they found an in
esting effect called phase anticipation. The rate equation
the other hand do not show this effect. They argued t
phase anticipation occurs due to some special biologica
fect. From our discussion about the validity of rate equatio
it is clear that the effect of phase anticipation, which occ
on short time scales, cannot be described by rate equat
We will come back to this point in our conclusions.
6-5
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In the following section we discuss some simple, on
dimensional examples. The most simple case, the dich
mous two-state model, is exactly solvable. For this case
for more general examples we compare the solution of
rate equations with the solution of the Fokker-Planck eq
tion. For all cases, rate equations yield very good result
the potential fluctuations are slow compared to the relaxa
within the potential wells.

III. SOLUTIONS FOR SPECIAL CASES

A. The dichotomous two-state model

The most simple model with a fluctuating potential is
dichotomous two-state model. The potentialV(xW ,z) has two
minima atxW1 andxW2 . z(t) is a dichotomous process. Such
model has two states and corresponding ratesr i j , i , j 51,2
for transitions between them. For this model we letr 1ªr 21
52r 11, r 2ªr 1252r 22. The rate equations are

dn1

dt
52r 1n11r 2n2 , ~30!

dn2

dt
52r 2n21r 1n1 . ~31!

Using the normalization conditionn11n251 one obtains a
single differential equation

dn1

dt
52~r 11r 2!n11r 2 . ~32!

In the following the index ofn1 will be dropped. The
Fokker-Planck equation forp(n,z,t) is

]p~n,z,t !

]t
5

]

]n
@~r 11r 2!n2r 2#p~n,z,t !1Mzp~n,z,t !.

~33!

In general it is possible to expand the stationary solut
using the eigenfunctions ofMz ,

p~n,z!5(
k

pk~n!fk~z!. ~34!

For the matrix elements ofr i(z) one has the representatio

r i~z!fk~z!5(
l

r iklf l~z!. ~35!

It is useful to define

r klªr 1kl1r 2kl . ~36!

The Fokker-Planck equation for the stationary distribut
p(n,z) has now the form
02110
-
o-
d
e
-
if
n

n

]

]n
@~r 11r 2!n2r 2#p~n,z!5

]

]n (
kl

~r kln2r 2kl!pkf l

5(
l

l l plf l . ~37!

The two matricesRi5(r ikl) have the same eigenvectors a
only positive eigenvalues. This must be true forR5R1
1R2 as well. In the dichotomous caseR and R2 are 232
matrices. The eigenvalues arer 6 and r 26 . r i(z) takes the
two values r i 6 with the probabilities p6 . Let n6

5r 26 /r 6 . I assumen1.n2 . The explicite form is ofR is

R5S r 00 r 01

r 10 r 11
D 5S p1r 11p2r 2 Ap1p2~r 12r 2!

Ap1p2~r 12r 2! p1r 21p2r 1
D

~38!

and similarly forR2 . p0(n) vanishes forn,n2 and for n
.n1 . The two equations~37! are

~r 00n2r 200!p01~r 10n2r 210!p150, ~39!

d

dn
@~r 01n2r 201!p01~r 11n2r 211!p1#5l1p1 . ~40!

The integration constant in Eq.~39! vanishes since the aver
age ofdn/dt vanishes. It may be used to eliminatep1, one
obtains

d

dn
Ap052l1Bp0 , ~41!

where

A5
f ~n!

r 10n2r 210
, ~42!

B5
r 00n2r 200

r 10n2r 210
. ~43!

The solution of this equation is

p05
C

A
expS 2l1E B

A
dnD , ~44!

whereC is a normalization constant andf (n) is given by

f ~n!ª~r 01n2r 201!~r 10n2r 210!2~r 00n2r 200!~r 11n2r 211!

52det~Rn2R2!52det~R!~n2n1!~n2n2!. ~45!

The integral in Eq.~44! can be calculated. The explicit solu
tion is

p0~n!5C~n2ñ!~n2n2!a221~n12n!a121, ~46!

where

a25
l1r 00~n02n2!

r 1r 2~n12n2!
, ~47!
6-6
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a15
l1r 00~n12n0!

r 1r 2~n12n2!
, ~48!

ñ5
r 210

r 10
5

r 212r 22

r 12r 2
. ~49!

One can show that eitherñ,n2 or ñ.n1 , so thatp0(n) is
non-negative fornP@n2 ,n1# as it should be. Forl1→`
one obtains the expected resultp0(n)5d(n2n0) wheren0
-

02110
5r200/r 00. For smalll1 , p0(n) has algebraic singularities a
the boundariesn6 . For small but finitel1, the singularities
remain integrable. In the limitl1→0, p0(n) tends to a sum
of two d functions~with appropriate weights according to th
dichotomous process! located atn65r 26 /r 6 ,

p0~n!5p1d~n2n1!1p2d~n2n2!. ~50!

The average valuen̄ of n can be calculated explicitely. On
obtains
n̄5E
n2

n1

np0~n!dn

5

E
n2

n1

n~n2ñ!~n2n2!a221~n12n!a121dn

E
n2

n1

~n2ñ!~n2n2!a221~n12n!a121dn

5
n2~n22ñ!B~a1 ,a2!1~2n22ñ!~n12n2!B~a1 ,a211!1~n12n2!2B~a1 ,a212!

~n22ñ!B~a1 ,a2!1~n12n2!B~a1 ,a211!

5

n2~n22ñ!1~2n22ñ!~n02n2!1~n12n2!~n02n2!
~a211!

~a11a211!

n02ñ
. ~51!
itly
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One can easily show thatn̄5n0 in the limit l1→`, and n̄
5p1n11p2n2 for l150. Finally one obtains

n̄5n01~p1n11p2n22n0!
t

t̄1t
, ~52!

wheret5l1
21 andt̄5r 00/r 1r 25p1 /r 21p2 /r 1 . Thus,n̄

depends monotonously ont. The expression~52! as well as
the formula forp0(n), Eq. ~46!, have been mentioned with
out a detailed derivation in@9#.

B. The general two-state model

For a general noise processz(t) the effective rates are

r̄ i5E dz@12r ~z!Mz
21#21r i~z!f0~z!, ~53!

where againr 1ªr 2152r 11, r 2ªr 1252r 22. This yields di-
rectly

n̄5

E dz~12r ~z!Mz
21!21r 2~z!f0~z!

E dz~12r ~z!Mz
21!21r ~z!f0~z!

. ~54!
Whether or not this expression can be calculated explic
depends on the generatorMz of the noise processz(t). A
case where the calculation is possible is a kangaroo proc
A kangaroo process is a process where all nonvanishing
genvalues ofMz are equal. In that case, Eq.~54! simplifies to

n̄5

E dz@11tr ~z!#21r 2~z!f0~z!

E dz@11tr ~z!#21r ~z!f0~z!

. ~55!

The derivation of the last result is not straightforward: O
cannot simply replaceMz by 2t21. But it turns out, that the
result is the same, since additional factors in the denomin
and in the numerator cancel each other. Equation~55! is
valid for a dichotomous process as well and yields direc
Eq. ~52!.

C. Comparison with the Fokker-Planck equation

As already mentioned, the validity of rate equations
fluctuating potentials is less clear than for fixed potentials
is therefore important to compare results for rate equati
with exact solutions of the Fokker-Planck equation. They c
be obtained easily for one-dimensional piecewise linear
tentials. This has been shown in detail for periodic potent
in @12,13#. In the present case the procedure is similar, let
therefore describe it only briefly. For this comparison, w
6-7
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ANDREAS MIELKE PHYSICAL REVIEW E 64 021106
restrict ourselves to the stationary distributionp0(x)
5*dzr(x,z) and to the mean escape times for the parti
sitting in a minimum of the potential.

We first divide the domainV, on which the Fokker-
Planck equation is defined, into a set of intervalsI i , i
51, . . . ,NI . We assume that the forcef (x,z)5
2]V(x,z)/]x is constant on each intervalI i ,

f ~x,z!5 f i~z! if xPI i . ~56!

As a second step, we expand the stationary solution of
Fokker-Planck equation using the eigenbasis ofMz ,

r~x,z!5p0~x!f0~z!1 (
k.0

pk8~x!fk~z!. ~57!

On the intervalI i , the Fokker-Planck equation yields

f i~z!p08~x!f0~z!1Tp09~x!f0~z!1 (
k.0

pk9~x! f i~z!fk~z!

1T(
k.0

pk-~x!fk~z!2 (
k.0

lkpk8~x!fk~z!50. ~58!

This equation can be integrated once with respect tox. Fur-
thermore, expression of the formf i(z)fk(z) can be ex-
panded,

f i~z!fk~z!5(
k8

f k,k8
( i ) fk8~z!. ~59!

One then obtains

f 0,0
( i ) p0~x!1 (

k8.0

f k8,0
( i ) pk8

8 ~x!1Tp08~x!50, ~60!

f 0k
( i )p0~x!1 (

k8.0

f k8,k
( i ) pk8

8 ~x!1Tpk9~x!5lkpk~x!, k.0.

~61!

The coefficientsf k,k8
( i ) and therefore the final set of equatio

for pk(x) do not depend on the representation of the no
processz(t) as it should be. If the space of functionsfk(z)
has finite dimensionN, Eqs.~60! and~61! form is a set ofN
differential equations with constant coefficients, which c
be solved explicitely. One obtains a simple eigenvalue pr
lem for anN3N matrix, which can be solved numerically.
general solution of this problem is a linear combination
the N different solutions of the eigenvalue problem. The
maining problem is thus to determine theNIN coefficients in
these linear combinations. They are determined by the
malization ofp0(x), by the continuity ofp0(x), and by the
continuity ofpk(x) andpk8(x) for k.0. This is a problem of
solving NIN linear equations forNIN unknown coefficients,
which can again be done easily numerically as long asNIN
is not too large.

In Fig. 1 we show explicit results for a one-dimension
dichotomous two-state model. The potentialV(x,z)
5^V&(x)1zDV(x) has two minima.z(t) is a dichotomous
02110
e

e

e

n
-

f
-

r-

l

process that takes the two values61. In this caseN52 and
NI56. The plot shows the probability to find the particle
the left potential well as a function oft. It can be compared
to n̄, which can be calculated from the effective rate equ
tions. A similar comparison for a different, dichotomous
fluctuating potential was shown in@9#. The results from the
rate equation yield an accurate approximation for sufficien
large t, as expected. The intrawell relaxation time can
estimated from the time the particle needs to reach a m
mum of the potential if it starts close to the maximum. In o
units it is somewhat larger than unity. The approximati
becomes better for smaller temperature. The behavio
similar for other dichotomously fluctuating potentials wi
two minima.

For other stochastic processesz(t) one can draw similar
conclusions. Let us consider as an example a poten
V(x,z)5^V&(x)1zDV(x), where nowz(t) is a sum ofN
21 dichotomous processes, where each dichotomous
cess takes the values61/AN. This means thatz(t) takes the
values (2N12n11)/AN, n50, . . . ,N with the probability
pn522N(n

N). In the limit N→` one obtains an Ornstein
Uhlenbeck process@14#. For ^V& andDV we take the same
values as in Fig. 1. Results for the mean occupancy
shown in Fig. 2 together with the corresponding results fr
the rate equation, obtained from Eq.~54!. As for the dichoto-
mous process, the results from the rate equation agree q
well with the results from the Fokker-Planck equation for n
too small values oft.

Similar results can be obtained for other noise proces
as well. For kangaroo processes, the mean occupancy
been obtained explicitely, Eq.~55!. The corresponding re
sults for the mean occupancy are similar to what has b
obtained so far. If one takes, for instance, kangaroo proce

FIG. 1. The mean occupancy in the left minimum of a piecew
linear, dichotomously fluctuating potential as a function oft for
variousT . The parameters areT50.2, 0.4, 0.6, 0.8, 1.0, the averag
force takes the values 10, 3/2,23/2, 4/3,24, 210; D f takes the
values 0, 1/4,21/4, 2/3, 22, 0. The force jumps atx524,
22, 0, 3, 4. The maximal value of the mean occupancy decre
with increasingT. The dashed lines are the results from the effect
rate equation.
6-8



-
am

ro
ss
r
te
w

o
rib
wi
ia
n
e
ti

de-
ise

ry

The
ary
for
, di-
old
me
ec-
s.

ple
at a
to

is

be

tu-

tiv
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with the samef0(z) as for the sums of dichotomous pro
cesses in Fig. 2, the quantitative results are almost the s
they differ by less than 1%.

The results in Fig. 2 show that already for smallN one
obtains essentially the result for the Ornstein-Uhlenbeck p
cess. The convergency to the Ornstein-Uhlenbeck proce
very fast. ForN.6 the curves lie on top of the curve fo
N56. Clearly, the convergency depends on the parame
of the system. For smaller temperatures we observe a slo
convergency.

It is possible to consider potentials with more than tw
minima as well. The corresponding rate equations desc
systems with more than two states. For simple systems
few minima and, e.g., a dichotomously fluctuating potent
one can again compare the results from the Fokker-Pla
equation with the results from the rate equations. The gen
behavior of such systems is again described by the effec

FIG. 2. The mean occupancy in the left minimum for a fluc
ating potential as in Fig. 1.f and D f are the same as in Fig. 1,T
50.4. The different curves are for sums ofN21 dichotomous pro-
cesses,N52, . . . ,6. ForincreasingN the maximum of the curve is
shifted to the left. The dashed lines are the results from the effec
rate equation, the results forN54,5,6 cannot be distinguished.
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rates as long ast is not too small. Whether or not Eq.~29!
can be used to calculate the effective rates analytically
pends on the structure of the problem. For complicated no
processes or for potentials with many minima,Reff can only
be obtained numerically.

IV. MATHEMATICAL ASPECTS

In the main part of this work we investigate the stationa
solution of a Fokker-Planck equation~5! with a fluctuating
potential, assuming that such a stationary solution exists.
aim of this section is to prove the existence of a station
solution under certain assumptions that will be sufficient
our purpose. For the special case of a one-dimensional
chotomously fluctuating potential, Pechukas and Ankerh
@10# proved the existence of a stationary solution under so
special assumptions on the potential. The result of this s
tion can be understood as a generalization of their result

A. The discrete case

Let us first discuss the discrete case, which is very sim
but shows some interesting aspects. Let us assume th
system hasN states and that it can move from one state
another. The behavior is described by a rate equation

dpi

dt
5(

j
r i j pj . ~62!

We now assume that the rates fluctuate betweenNr different
statesa51, . . . ,Nr . The fluctuation between these states
determined by a matrixM5(mab)a,b51, . . . ,Nr

that contains

the rates for the fluctuations. The probabilitypia of the fluc-
tuating system to be in the state given byi and a is deter-
mined by

dpia

dt
5(

j
r i j apj a1(

b
mabpib . ~63!

The stationary solution of this equation, if it exists, must
the eigenvector of the matrix

e

R̂5S R11m11I m12I m13I ••• m1Nr
I

m21I R21m22I m23I •••

m31I m32I R31m33I � ]

] � � mNr21,Nr
I

mNr1
I ••• mNr ,Nr21I RNr

1mNrNr
I

D ~64!
e
tate
to eigenvalue 0. Here,I is theN3N unit matrix. The matri-
cesRa are rate matrices. As a consequence,

r ii a52(
j Þ i

r j i a ~65!
and r i j a>0 for iÞ j . Furthermore,M is a rate matrix,maa
52(bÞamb,a , and ma,b>0 for aÞb. Therefore, all the
off-diagonal matrix elements ofR̂ are non-negative. I assum
that starting from some state of the system, any other s
can be reached dynamically. This means thatR̂ is irreducible.
6-9
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Then, one can introduce a constantc that is larger than the
modulus of any diagonal matrix element ofR̂. Let Î be the
NrN3NrN unit matrix. Then the matrixR̂1cÎ is irreducible
and has only positive matrix elements. As a consequence
Perron-Frobenius theorem applies. The eigenvalue with
largest modulus ofR̂1cÎ is nondegenerate, real, and po
tive, and the corresponding left and right eigenvectors h
only non-negative entries. Now, the vector (1,1, . . . ,1) is a
left eigenvector ofR̂ with the eigenvaluec. Thereforec is the
eigenvalue with the largest modulus ofR̂1cÎ. This shows
that 0 is the eigenvalue ofR̂ with the largest real part an
that its right eigenvalue has only non-negative entries. I
the stationary solution of Eq.~63!. One can show that an
solution of the rate equation~63! tends to the stationary so
lution for t→`.

This proof is very simple, it is based on the fact that ra
are non-negative and on the Perron-Frobenius theorem
us now take a look at the original Fokker-Planck equat
~5!. For simplicity, we discuss only the case where the
tential fluctuates betweenNr different states.z takesNr dif-
ferent values. Let us assume that the Fokker-Planck equa
is defined on a finite open domainV with reflecting bound-
ary conditions on the boundary]V. If one introduces some
kind of coarse graining, i.e., a partition ofV into N small
partsV i , it is then possible to apply the above result and
stationary solution exists. This holds for any partition ofV
into small parts. Therefore one should expect that a stat
ary solution of the Fokker-Planck equation~5! exists as well.
We will show this in the next section using a different a
proach. One has to show that the Fokker-Planck operator
a unique right eigenstate with eigenvalue 0 and that
solution of the Fokker-Planck equations tends to that solu
for t→`. Since we are dealing with a differential operat
and not with a matrix, it is not possible to use a Perro
Frobenius type argument.

B. The continuous case

Let us first show that the ratio of any two solutions of t
Fokker-Planck equation tends to unity in the limitt→`. As
for the discrete case we assume thatz takesNr valuesza ,
a51, . . . ,Nr and we let

r~xW ,za ,t !5pa~xW ,t !. ~66!

Furthermore, we again assume that the Fokker-Planck e
tion ~5! is defined on a finite open domainV with reflecting
boundary conditions on the boundary]V. The Fokker-
Planck equation can be written in the form

]pa

]t
5¹W @¹W Va~xW !1T¹W #pa1(

b
mabpb

5Lapa1(
b

mabpb . ~67!

Let p1a , p2a be two positive solutions of this equation. W
define
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H~ t !5(
a

E ddx p1a ln~p1a /p2a!. ~68!

This function is often called Kullback information and ha
been introduced by Kullback@15,16#. By standard methods
one can show that~i! H(t)>0 and~ii ! dH/dt<0. As a con-
sequenceH tends to zero fort→` and thereforep1a /p2a
tends to 1. The proof is similar to the one presented in ch
ter 6 of @17#. First, one shows

H~ t !5(
a

E ddx p2aS p1a

p2a
ln

p1a

p2a
2

p1a

p2a
11D>0, ~69!

which follows from r ln r2r11>0 for r>0. Now, one can
calculate

dH

dt
5(

a
E ddxFdp1a

dt
ln~p1a /p2a!2~p1a /p2a!

dp2a

dt G
5(

a
E ddxF ~Lap1a!ln~p1a /p2a!

1(
b

mabpb ln~p1a /p2a!2
p1a

p2a

dp2a

dt G
5(

a
E ddxFp1aLa

† ln~p1a /p2a!

1(
b

mabpb ln~p1a /p2a!2
p1a

p2a

dp2a

dt G . ~70!

The first term may be evaluated using

La
† ln~p1a /p2a!5

p2a

p1a
La

†~p1a /p2a!2T
p2a

2

p1a
2 @¹W ~p1a /p2a!#2.

~71!

This yields

dH

dt
52T(

a
E ddx p1a@¹W ln~p1a /p2a!#2

1E ddx(
ab

mabS p1b ln
p1a

p2a
2p2b

p1a

p2a
D . ~72!

The first term is clearly negative or 0. To investigate t
second term, let us introduce

Lab5dab1emab , ~73!

wheree should be sufficiently small (e21.maxaumaau, I will
take the limite→0 below!. Let p̂ia5(bLabpib . One can
show that
6-10
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E ddx(
a

S p1a ln
p1a

p2a
2 p̂1aln

p̂1a

p̂2a
D

5E ddx(
ab

Labp1b ln
p1bp̂2a

p2bp̂1a

>E ddx(
ab

Labp1bS 12
p2bp̂1a

p1bp̂2a
D 5 0. ~74!

Expanding the left-hand side in powers ofe, one obtains

E ddx(
ab

mabS p1b ln
p1a

p2a
2p2b

p1a

p2a
D<0 ~75!

and thereforedH/dt<0. The limit pa(xW ,t→`) of a positive
solution of the Fokker-Planck equation is positive. If the p
tential Va(xW ) is bounded within the domainV, and if V is
connected, this limit yields the unique stationary solution
the Fokker-Planck equation since the Fokker-Planck oper
does not depend on time. This shows the existence of
stationary solution of the Fokker-Planck equation.

V. OUTLOOK AND CONCLUSIONS

One main result of this paper is that the overdamped m
tion of a Brownian particle in a fluctuating potential can
described by kinetic rate equations if~i! the potential fluc-
tuations are slower than the relaxation of the particle wit
a minimum of the potential and if~ii ! the positions of the
minima of the potential do not fluctuate. For temperatu
small compared to typical barrier heights of the potential,
quantitative agreement of the two different descriptions
very good if one calculates stationary or quasistation
properties. This shows that the long-time behavior o
Brownian particle in a fluctuating potential has univers
properties and does not depend on the details of the pote
but only on the rates for the transition over the various fl
tuating barriers. This is important, since in many realis
situations details of the potential are not known. For
stance, in the case of a cell surface receptor or some o
protein in a cell membrane, one knows eventually someth
about the stable or metastable conformations of the prot
but ~almost! nothing about the potential that describes t
energy of the deformations of the protein. Even if the pot
tial is known, it is often simpler to solve a kinetic rate equ
tion instead of a Fokker-Planck equation.

Starting from the kinetic rate equation with fluctuatin
rates, we derived a formula for effective rates that holds
general noise processes. This formula yields directly in
mation on the stationary and long-time properties of the s
tem. It can be evaluated for many noise processes. The
cial case of a dichotomous two-state system can be so
exactly and one obtains the distribution functions for t
occupancy of the two states.

As a byproduct, we could show the existence of a stati
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ary solution of the Fokker-Planck equation with a fluctuati
potential under some general conditions and thereby ge
alize a result published recently by Pechukas and Ankerh
@10#.

As a direct consequence of our calculations, one can
vestigate where rate equations can yield good results
where not. This is important since in many application
mainly in biological situations, rate equations are used fo
direct comparison with experiments. For instance, dynam
properties of membrane proteins are often described and
vestigated by rate equations. An interesting and well-kno
example is the effect of time-dependent electric fields
such proteins. It has been discussed it detail by Astumian
Robertson@18# using rate equations. In such systems o
observes strong amplifications of weak signals. Moss@19#
suggested that the reason may be stochastic resonance.
likov and Dertinger@20# gave a qualitative discussion sup
porting the occurence of stochastic resonance in such
tems using a time-dependent potential, but a descrip
using rate equations would have been possible as well
already mentioned, Petracchiet al. @11# studied the effect of
time-dependent electric fields on membrane proteins exp
mentally. As a specific example they used a K1 channel.
They measured various stationary probabilities and dyna
cal quantities to describe the statistics of the transitions
these systems. As an interesting result they found a ph
anticipation: One of the transitions occurs with a negat
phase shift compared to the stimulus. They compared t
experimental results with numerical results for a simple tw
state Markov model, described by a rate equation. The
equations do not show the phase anticipation. The auth
argued that this effect has a biological origin and discus
various possible hypotheses to explain it.

From our discussion it is clear that rate equations do
scribe the stationary or long-time behavior of a system qu
well. Indeed, the stationary or quasistationary properties
culated by Petracchiet al. @11# agree very well with their
experimental findings. The phase anticipation is a dynam
effect that occurs on shorter time scales. Therefore one
not expect that it can be obtained using rate equations.
calculations suggest that this effect depends on the detai
the potential and not only on the rates, which are determi
mainly by the barrier heights. The main problem is that in t
case of a specific membrane protein the potential that
scribes the dynamics is not known. Therefore it is not p
sible to model the K1 channel using a time-dependent p
tential. But it would be of general interest to investiga
whether or not and under which conditions a Brownian p
ticle in a time-dependent potential shows the described ph
anticipation. This is clearly beyond the scope of the pres
paper.
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