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Effective rate equations for the overdamped motion in fluctuating potentials
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We discuss physical and mathematical aspects of the overdamped motion of a Brownian particle in fluctu-
ating potentials. It is shown that such a system can be described quantitatively by fluctuating rates if the
potential fluctuations are slow compared to relaxation within the minima of the potential, and if the position of
the minima does not fluctuate. Effective rates can be calculated; they describe the long-time dynamics of the
system. Furthermore, we show the existence of a stationary solution of the Fokker-Planck equation that
describes the motion within the fluctuating potential under some general conditions. We also show that a
stationary solution of the rate equations with fluctuating rates exists.
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[. INTRODUCTION with a dichotomously fluctuating linear ramp can be de-
scribed by kinetic rate equations if the potential fluctuations
Thermally activated relaxation processes are an importardre not too fast. A similar observation was made[ ],
mechanism for the dynamics of many physical, chemicalwhere it was shown that noise induced stability of a meta-
and biological systems. The diffusion of a Brownian particlestable state occurs in systems with a single fluctuating bar-
in a potential with several minima and barriers serves as &er.
paradigm for such relaxation processes. The minima of the In the present paper we consider potentialslidimen-
potential represent stable or metastable states of the systesipns with several minima and barriers. Furthermore, we al-
and the motion of the particle models the transition of thelow general potential fluctuations. For simplicity we assume
system from one state to the other and back. The most simplfat the potential fluctuations can be parametrized by a single
example in this class of models is the problem of diffusionMarkovian noise process(t). Often it is argued that the
over a single potential barrier pioneered by KranjéisThe = Markovian noisez(t) represents the cumulative effects of
dynamics of the diffusion over a barrier is dominated by amany weakly coupled environmental degrees of freedom. In
characteristic time scale, which is given by the mean firsthat case the central limit theorem can be applied Ztjl
passage time for the escape out of the minimum of the pobecomes an Ornstein-Uhlenbeck process. On the other hand,
tential. In a model with several minima and barriers, thethere are many realistic situations where the fluctuation of
corresponding time scales are given by the inverse rates fahe potential is triggered by a singler few) environmental
the transition from one state to another. degree of freedom. The most simple case of a non-Gaussian
Often one uses kinetic rate equations to describe the dyftuctuating potential is a dichotomously fluctuating potential
namical properties of relaxation in chemical or biological as discussed, e.g., [2]. But in many applications, the po-
systems. This description is clearly much simpler than thdential fluctuates not only between two different values.
description of a Brownian particle in a potential. To calculateSince all these different cases are of interest, we will inves-
rate coefficients, it is often sufficient to know some of thetigate general noise processes. Furthermore, it is clear that
properties of the potential energy surface, like barrierthere are always many possibilities to parametrize a fluctu-
heights. In principle, if one knows the potential energy sur-ating potential by a Markovian noise process. This is another
face, both descriptions are equivalent. One can calculateeason why it is useful to consider general noise processes.
static or dynamic properties of the system either using the A main purpose of the present paper is to show under
Brownian particle in the potential or using the rate equationswhich conditions it is possible to pass from a model with a
In many situations, the potential fluctuates due to somdluctuating potential to a set of rate equations with fluctuating
external fluctuations, chemical reactions, or oscillationsrates. We will discuss general models in arbitrary dimensions
These fluctuations usually have a finite correlation timeand with potentials having several minima. The general pic-
which corresponds to a nonthermal noise. The most simplaure we support by our calculations is that rate equations can
model with a fluctuating potential consists of a single fluc-be used if the potential fluctuations are slow compared to the
tuating barrier, where the height of the barrier fluctuates berelaxation within the minima of the potential and if the po-
tween two different values. Doering and GaddBainvesti-  sitions of the minima of the potential do not fluctuate. The
gated such a simple model. They found a local minimum inong-time behavior of the model with a fluctuating potential
the mean first passage time as a function of the barrier fluas then similar to that obtained using rate equations. The
tuation rate. This effect has been called resonant activatiofiuctuation of the potential is mainly a fluctuation of the bar-
and has been studied extensivEdy-8|. rier heights. The potential fluctuations may be fast compared
In principle it should be possible to use a description withto relaxation across the barriers of the potential.
rate equations in the case with fluctuating barriers too. This After these remarks it is clear but important to mention
picture has already been suggested by Bier and Astupdjan that the applicability of rate equations depends also on the
They showed that the long-time dynamics of a simple modefjuantities one is interested in. As long as one is interested in
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stationary or quasistationary properties, rate equations yieldthere the potential is defined in a finite domdin with
good results. If one is interested in properties on time scalegeflecting boundary conditions on the boundafy. Let us
of the order of or smaller than the relaxation within the assume that the potential fluctuations can be parametrized by

minima, rate equations cannot be applied. _ _a single stochastic variable(t), V(x,t)=V(x,z(t)). It is
Furthermore, we analyze systems with fluctuating rates ijear that such a representation is not unique. Insteagtpf
detail and derive effective ratéwhich do not fluctuate The  gne can use any monotonic function zft) to parametrize
effective rates yield the relevant time scales for the Iong—time\/(x,t)_ Often one uses a simple linear ansax,z(t))
behavior of the system. They can _be dlrectly_ compared to tthO(X)JFZ(t)AV(X) with a dichotomous or an Ornstein-
mean escape ratgs in the_ qu'ctu:?\tlng pqtenﬂals. Furthermorgyyienbeck process(t). As already mentioned in the Intro-
they yield the stationary distribution, which can also be com-yction, we want to investigate models for which the poten-
pared with results obtained directly by solving the Fokker-ija| fluctuations represent the effects of few environmental
Planck equation with a fluctuating potential. The comparisoryegrees of freedom. Therefore we do not restrict ourselves to
is easily done for simple, one-dimensional systems with, jinear ansatz or to special noise processes. The only as-
piecewise linear potentials. For such systems it is relat"’9|3éumption we make is that the noise proce& can be de-

easy to solve the Fokker-Planck equation directly. scribed using a Fokker-Planck equation for the probability
The paper is organized as follows. In the next section Weyistribution p(z,1)

discuss how a kinetic rate equation with fluctuating rates can
be obtained starting from a Fokker-Planck equation with a
: : L@ e ap(z,t)
fluctuating potential, and in which situations one can expect
it to be valid. We also show how one can derive effective at
rates from the kinetic rate equation with fluctuating rates.
The effective rates yield the characteristic time scales for thdhe right eigenfunctions of the generatdr, are denoted by
escape out of the minima of the fluctuating potential. The¢n(z), the eigenvalues by-\,,
general formula for the effective rates can be evaluated for
special noise processes. This is done in Sec. lll. The results M,dn(2)=—Nndn(2), (3
are used to compare the description of a system by effective
rates with the priginal Fokker-EIanck equa_tion. For our dis'where)\():o, N1>0, Ay=\, 1. ¢o(2) is the stationary dis-
cussion the gmste_nce ofastaponary so!uuon of the FOkkerfribution of the noise process(t). We let ¢,(2)
Planck equation with a fluctuating potential and the emstencezg (2) éo(2). Then one has
. . . . . . n 0

of a stationary solution of a kinetic rate equation with fluc-
tuating rates is essential. Section Il also contains the exact
s_olution of the dichotomous two-state system and its de_riva- f dz6,(2)9m(2) do(2) = 6. (4)
tion. Some of the exact results have already been mentioned
without derivation in[9]. In Sec. IV we show that the sta-
tionary solutions of the rate equation with fluctuating ratesdn(z) are orthogonal functions with respect to the weight
and of the Fokker-Planck equation with a fluctuating potenfunction ¢(z). For n=m this equation fixes the normaliza-
tial exist under some general assumptions on the potentialion of ¢,(z). The eigenvalue\;= 7' determines the cor-
This result is a generalization of a recent, similar result byrelation time of the noise procesgt). We already men-
Pechukas and Ankerho[d0]. Finally, in Sec. V, some pos- tioned that the parametrization of the fluctuating potential by
sible applications are mentioned and conclusions of our rea stochastic variable(t) is not unique. One can always
sults are drawn. As a specific example we discuss how outhoose a different parametrization. The final results should of
results can be used to interpret experimental findings focourse be independent of the parametrization. If one changes
membrane proteins. the parametrization, the spectrum Mf, remains the same,
but the right eigenfunctions are changed.

The motion of the overdamped patrticle in the fluctuating
potential can be described using the joint probability distri-

A. Noise processes and the Fokker-Planck equation bution p(X,z,t) for x(t) andz(t). It obeys the Fokker-Planck

The overdamped motion of a particle in a fluctuating po-€duation
tential is usually described by a Langevin equation,

=Mzp(z,1). 2

II. DERIVATION OF EFFECTIVE RATE EQUATIONS

-

ap(X,z,t)
dx —

=V-[(VV(X,2)+ TVIp(X,z,t) + Mp(X,Z,t).
=0+ V2TEw. & g TVl U Moz

(5

We have chosen the units such that the friction constant i(x,z) must have the same properties as a function a
unity. ¢(t) is a thermal(Gaussian whitenoise, it satisfies V(X,t). It must tend to infinity sufficiently fast whefx|

(E())=0, (£a()&p(t")) = dapd(t—t"). T(X,1)=—VV(X,t)  becomes large; or alternatively, we may define the Fokker-
is the force of the fluctuating potential. We investigate SitU-P|anck equation on a finite, open domdinwith reﬂecting
ations where the potential tends to infinity fb?|—>oc or  boundary conditions on the boundaf¥). Furthermore we
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assume thaV(i,z) is finite for anyz out of the support of

bo(2). V()Z,z) does not have any infinitely high potential

wells inside().

B. Rate equations

1. Rate equations for fixed potentials

PHYSICAL REVIEW &4 021106

AV,= min V(x)—V(X;). 9)
XEQi\ZEi

Let AV=minAV,. Then this shows that L hasN eigenval-
ues decay at least as fast as exp(//ﬂ to zero whenT
tends to zero.

Let us now considet restricted to(); but with reflecting

Let us first briefly review the case of a potential that doegooundary conditions om();. With these boundary condi-

not fluctuate. The Fokker-Planck operator has the form
L=V-[(VV(X)]+TV). (6)

Let us assume that the potenﬂéai) hasN distinct minima
at the pointsx;, i=0, ... N—1 and thatV(x)—o for |X|

tions —L has one eigenvalue 0 and typically other eigenval-
ues that are much larger than ex@{V/T). These eigenval-
ues describe the time scale for a decay within the potential
well around the minimum afi. On the original domair{}

one can therefore expect thatl has one eigenvalue 0 and
N—1 eigenvalues that are of the order of exp(T) and that

—o sufficiently fast.L has one eigenvalue 0, the corre- all other eigenvalues of-L are much larger ifT is suffi-
sponding right eigenfunction is the stationary distributionciently small. Let us denote the smallésteigenvalues of

ocexr[—V(i)/T]. —L is non-negative, i.e., all the other eigen-

—L by \;, i=0,... N—1, \g=0, and the corresponding

values of—L are positive. Using a simple variational argu- fight eigenfunctions byg;(x). Then, for time scales large

ment, one can show thatL has at leastN—1) eigenvalues
that behave like exp{c/T) for small T. Let us divide the

compared to the intrawell relaxation times of the potential
V()?), we can make the ansatz

entire spacé) in which the system is defined into subspaces

Qi . )_()iEQj if and Only if i:j, Q|HQJ:@ if |¢j UiQi
=QO\(U;0Q;). dQ); denotes the boundary 6€¥; . The bound-
aries are chosen such thaf(x)-VV(x)=0 for xe dQ;,
wheren;(x) is the normal vector to the bounda#f); at x.

N—-1

p(X,)= 2 pi(1)gi(X)

=0

(10

for the solution of the Fokker-Planck equatigp/dt=Lp.

Such a division ofQ) is always possible. Depending on the This ansatz should describe the long-time behavior of the

form of V(i) it may not be unique. Let us now introduce
subsetd);C();, which do not contain a small region close

to the boundary of);, but which do contain the positions

of the minima together with a sufficiently large region
around them. Leb;(x) be a smooth function that is equal to

unity if Xe ﬁi and that vanishes ik e Q;. In Qi\ﬁi the

function?i(i) drops smoothly from 1 to 0. We assume that

sufficiently many derivatives of; exist.

In a next step, we introduce L
=exgV)/(2T) L exd —V(X)/(2T)]. L is a Hermitian opera-
tor. It has the explicit form

. , 01, 1
L=TV?+ S (VAV) = 2=(VV)2. 7)

Clearly,L has the same eigenvalueslaexyf —V(x)/(2T)] is
the (un-normalized eigenfunction of_ to eigenvalue 0. Let
9i(x) =C; exd —V(X)/(2T)]6:(x), where C; is chosen such
that fd’|g;(x)|2=1. One hasfdxg;(x)g;(x)=4, ;. Let
I:i,j =fddx§i(>2)f_§j(>2). These quantities vanish fo# . For
i =] one obtains
. T - - -~ -
Lii=§|Ci|2J dixV - [exp{—V(X)/T}VE(x)].  (8)

Since V@, vanishes forxeQ;, L; contains a factor
exp(—AV;/T) where

system quite well. It is valid on time scales being large com-
pared to the intrawell relaxation times in the different poten-

tial wells of the potential.ni(t)zfxdlidpr()Z,t) is the
probability to find the particle in the regidh;, i.e., close to
the minimumx;. Let n;=f,_o dxg;j(x). One hasn(t)
=2pj(t)n;; . For the derivative with respect to time one
obtains

dn;
—'=J dixLp = > pjf dxLg;
dt  Jxeo, ] xe

:_; Njpjnij = Zk FikNk

11

where the matrixR=(ri;); j-o,...n—1 IS given by R=
—N7!AN. N is the matrix ;)i j—o ... n—1 @ndA is a di-
agonal matrix with the entries;, j=0, ... N—1. The dif-
ferential equatiordn;/dt=ZXr;.ny is the rate equation for
this problem. By construction, the eigenvalues Rfare

Unfortunately, the definition oR is not useful for an ex-
plicit calculation. If one is able to solve the eigenvalue prob-
lem of L, there is no need to describe the problem by a rate
equation. The rate equation is useful in situations, where it is
not possible to obtain analytic results from the Fokker-
Planck equation. Fortunately, approximate values for the
ratesr;; often yield very good results. In the one-dimensional
case the usual Kramers' rate is sufficiently good.

By constructionR is equivalent to the Fokker-Planck op-
eratorL projected onto the space of its eigenfunctions Wth
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largest eigenvalues. This means that dynamical properties omeights. With changing positions of the minima, the situa-
time scales corresponding to eigenvalues or larger can b@on becomes different. In that case the particle moves be-
well described byR. Properties on time scalda | ! or  tween the minima. The most simple example to illustrate that
smaller cannot be calculated usiRg\ sets the time scale is V(X,*)=3%7y.(x—x.)? 7y.>0. Letx,>x_. Then the
for relaxation within the potential wells. support of po(x) is the interval[x_,x,]. For pg(x) one
obtains
2. Rate equations for fluctuating potentials

1 1

Under which conditions is it possible to describe a prob- n
Y+(Xe=X) Yy (X=X_)

lem with a fluctuating potential by rate equations? It is clear
that one must be able to defingfor a fluctuating potential. Y(2ry.) U(2ry.)
This is possible if the stationary distribution is strongly X (X4 =X) H(X=x-) B (16)
peaked at the minimafi. But in general one can have a

situation, where the positioné of the minima fluctuate as
well. If this is the case, the probability distribution will not
necessarily be peaked. Let us discuss that using a simpﬁ
example: A one-dimensional dichotomously fluctuating po-
tential.

For this examplez takes two valuest 1 with equal prob-
ability. M, has the eigenvalues 0 ardr~ 1. In the eigenba-

Po(x)=C

with some normalization consta@ The distribution func-
tion po(x) is not peaked ax.. . It is clear that for smalll

0 one obtains a similar result. This simple example shows
at in a situation where the position of the minima depends
on z, the stationary distribution of the system is not neces-
sarily peaked at the minima of the potential.

Let us now assume that the potenNé(Ii,z) has minima

sis of M, the potentiaN(x,z) has the form atii and that the position:é of the minima do not depend on
z. For a fixed potential, rate equations can be used for time
(V)(X)  AV(x) scales larger than the intrawell relaxation times. It is there-
(AV(X) (V)(x))’ (120 fore clear that for potential fluctuations being faster than the

intrawell relaxation times, one cannot use rate equations. If
where (V)(x)=[V(x,+)+V(x,—)1/2, AV(X)=[V(x,+) the potential fluctuations are slower than the intrawell relax-

—V(x,—)]/2. Let  f(x)=—d({V)(x)/dx, Af(x)= ation t|mes_, and if thg pos[t|on of t_he minima dpes _not fluc-

—dAV(x)/dx. Let us calculate the stationary probability tuate, one is in an adiabatic S|tuat|on_. The particle is able to
po(X) =S dzp(x,2). The stationary joint probability distribu- follow the qu_c@uatlons o_f the potential as long as it stays

tion can be written a)(x,z) = po(X) do(2) + P1(X) b1(2). close to a minimum. This means that one can calculate the
Inserting this into the stationary Fokker-Planck equatlon
yields

rates for fixedz. The rates become functions ofThe system
is thus described by rate equations with fluctuating rates,

dn
gl fHAAT=T o )[po(x>¢o<z>+pl<x>¢1<z>] dt =2 " @on 1

+771pa(X) ¢1(2)=0. (13)

This yields two equations fquy(x) andp4(x) corresponding
to the two coefficients ofby(z) and ¢,(z), which both have
to vanish. Eliminatingp,(x) yields a single equation for
po(x), which can be written as

These rate equations are considerably simpler than the
Fokker-Planck equation with a fluctuating potential. On the
other hand, the validity of these equations is not entirely
clear. We used only heuristic arguments to obtain the rate
equations. In the following section we will compare results
obtained from the rate equations with results from the

d d d Fokker-Planck equation. This allows us to show, in which
1+ Tax (f T— ) (Af)~ 1(f T— )po(x) range of parameters the rate equations can be used.
LY 00(X) =0 14 C. Elimination of z(t)
_ o(X)=0.

dx If one is interested in stationary properties or in the long-

time behavior of the system, it is useful to derive effective
rates for the transition from one state to another. The effec-
tive rates do not depend an They can be calculated by
eliminatingz(t). If the correlation timer of z(t) is small, the
elimination process is a standard elimination of a fast vari-

Ioo(X)=C—Af exp( — EJ' dx f ) (15) able. To lowest order inr the effective rates are simply given

f2 T f2—Af2 by the average of the rateg(z). To derive effective rates,
let us transform the rate equation

This equation can be derived directly from the Fokker-
Planck equation. For=0 it can be solved explicitly. One
obtains

The integrandf/(f2— Af?) diverges at the minima o¥(x, )
+). If the position of the minima does not changp@(i) is dn >

a sum ofé functions located at the minima with appropriate dt RN (18
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into a Fokker-Planck equation for the joint probability den-
sity p(n,zt),

ap(n,z,t)

P =V [Rnp(n,z,t)]+M,p(n,zt).

19
SinceZ;n;=1 for all t, p(ﬁ,z,t) contains a facto(Z;n;

—1). To calculate average values for it is sufficient to
consider the stationary case. Let

p(N,2)=po(N) ¢o(2)+p(n,2) (20)

where
f dz p(n,z)=0, (22)
f dNn p(n,z)=0. (22)

Let (R)=/dz Rz)¢o(z). The stationary Fokker-Planck
equation yields

Vi [(R)N po<ﬁ>]=—v*aj dzRnmp(n,z) (23

and
p(n.2)=—M; 'ViRN[po(N) $o(2) +p(n.2)]. (24
Here,M, ! is the generalized inverse, it obeys, * ¢, (2)

==\, '¢,(2) for n>0, M, ¢pyo(2)=0. Equation (23
yields

(R po(f) =~ [ dzRAp(.2)+{() (29
with V:j(n)=0. Let(n)=fd"n npy(n). Since
f dVn j(n)= d—ﬁ =0 (26)
J dt

one has
(R)(n)=>, fdzf d"n(—1)'Rn(M, 'V :Rn)'+1
I=0

X po(N) ¢o(2)

% f dzf dn(RM, ) *Rnpo(n) do(2).

(27)

The first line in EqQ.(27) is obtained by solving Eq(24)
iteratively and inserting the result in E@®5). Integrating by
parts yields the second line. SinBeand M, do not depend

on n, the integration oven yields the averagén). The sum
overl gives finally

PHYSICAL REVIEW &4 021106

J dz(1—RM, Y 'R¢(z)(n)=0. (28)
The entries of the matrix
Reff:f dz(1-RM; )" 'Reo(2) (29

are the effective rates, the negative inverse of its diagonal
matrix elements are the mean escape times out of the states
The expansion in Eq27) can be viewed as a usuakxpan-
sion. Expanding the right-hand side of Eg9) yields ther
expansion for the effective rates. But since-(RM, Y is
positive definite, the right-hand side of EQ9) is well de-
fined for any . Whereas it is not possible to speak of an
effective barrier for larger [5], it is possible to obtain effec-
tive rates. But, depending on the noise process ang(a,

it cannot be excluded that the smallest nonvanishing eigen-
value of Rg¢ tends to zero in the limit—o. This may hap-
pen if the fluctuations of the barrier heights in the potential
can be arbitrarily large, so that infinite barrier heights occur.

In that case the solution fgn) has to be obtained from the
solution for finite 7 and the limit7— has to be taken af-
terwards since Eq28) does not have a unique solution for
7=, As long as the eigenvalue 0 B{z) is nondegenerate
for all z in the support ofy(z), the matrixRe4 has a non-
degenerate eigenvalue 0 and E2B) has a unique solution.
This is shown below in Sec. IV.

D. Applicability of effective rate equations

As we already discussed in Sec. Il A, rate equations de-
scribe only properties on long-time scales. If one wants to
investigate dynamical properties on characteristic time scales
of the order of the typical relaxation within a potential well,
one cannot use rate equations. If one wants to study a system
with a fluctuating potential that fluctuates fdse., one uses
a time scale of the order of the typical relaxation within a
potential wel) one has to use the Fokker-Planck equation.
This is true for equations with fluctuating rates as well as for
the effective rate equations we derived in the last section.

Since in many applications details of the potential are
unknown, one often uses rate equations. Especially in bio-
logical applications, e.g., for the description of membrane
proteins, one usually uses rate equations. A typical example
is the well-known paper by Petracatti al. [11], who studied
the effect of time dependent electric fields on membrane pro-
teins experimentally and used rate equations to interpret their
experimental findings. They were able to explain most of
their results using rate equations and a very simple ansatz for
the rates. In their experimental studies they found an inter-
esting effect called phase anticipation. The rate equations on
the other hand do not show this effect. They argued that
phase anticipation occurs due to some special biological ef-
fect. From our discussion about the validity of rate equations
it is clear that the effect of phase anticipation, which occurs
on short time scales, cannot be described by rate equations.
We will come back to this point in our conclusions.

021106-5



ANDREAS MIELKE PHYSICAL REVIEW E 64 021106

In the following section we discuss some simple, one- 9
dimensional examples. The most simple case, the dichoto- - [(r1+rz)n=rzlp(n.z)=—- % (M =T 21) Py
mous two-state model, is exactly solvable. For this case and
for more general examples we compare the solution of the
rate equations with the solution of the Fokker-Planck equa- = NPy (37
tion. For all cases, rate equations yield very good results if !

the potential fluctuations are slow compared to the relaxatiofne two matricesR, = (r,q) have the same eigenvectors and

within the potential wells. only positive eigenvalues. This must be true fRr=R;
+R, as well. In the dichotomous caseand R, are 2x2
lll. SOLUTIONS FOR SPECIAL CASES matrices. The eigenvalues are andr,. . ri(z) takes the

two values r;. with the probabilities p.. Let n.

) ) ) . =ry.Ir.. lassumen,>n_. The explicite form is oR is
The most simple model with a fluctuating potential is a

A. The dichotomous two-state model

dichotomous two-state model. The potenlsi‘&b?,z) has two ~[Too To1| p.ry+p_r_ VP+p_(ry—r_)
minima f;\t)?1 andiz. z(t) is a dichotomous process. Sucha ro 11 B Jpap_(ro—r_) pir_+p_r.
model has two states and corresponding ratgsi,j=1,2 (39)
for transitions between them. For this model werlgt=r ,;
=—ry4, [:=F1,= —T,,. The rate equations are and similarly forR,. pg(n) vanishes fom<n_ and forn
>n, . The two equation$37) are
dn;
gt - MaMatreng, (30) (F oo =T 200 Po+ (10N =T 210 P1=0, (39
d
dn, ﬁ[(roﬂ"_r201)p0+(rlln_rzn)pl]:)\lpl- (40)
W=—I’2n2+r1n1. (31)

The integration constant in E¢B9) vanishes since the aver-
Using the normalization condition; +n,=1 one obtains a age ofdn/dt vanishes. It may be used to elimingig, one

single differential equation obtains
dn; i"'\po:_)\pro, (41)
W:_(r1+r2)n1+r2. (32) dn
where
In the following the index ofn,; will be dropped. The
- i i f(n
Fokker-Planck equation fqu(n,z,t) is A (n) , 42
F10N—"r210
ap(n,z,;t) 4
T_%[(rl—’_rZ)n_rZ]p(n!Zat)_FMZp(n!Z!t)' :roon_r200 (43)
(33 rion—raw0
In general it is possible to expand the stationary solutionl "€ Solution of this equation is
using the eigenfunctions dfl,, C B
p0=Kexp< —Alf Kdn), (44)

p(n,z>=§ Pi(N) pi(2). (34)

whereC is a normalization constant aridn) is given by

For the matrix elements of,(z) one has the representation f(n)=(ron—="r200)(r 100 =210 = (r oo = 200 (I 12N =T 217)
=—def{Rn—R,)=—de{R)(n—n,)(n—n_). (45

ri(z)¢k(z)22| FikiP1(2). (35 The integral in Eq(44) can be calculated. The explicit solu-
tion is
It is useful to define po(n):C(n_ﬁ)(n_n_)a,fl(n_*__n)uur*l, (46)
rk|1=r1k|+ Mokl - (36) where
The Fokker-Planck equation for the stationary distribution a_:M, (47)
p(n,z) has now the form r.r_(ny—n_)
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~ Niloo(Ny —No)

“ror_(n.—n_)’ (48)

a

~ To0 Toy—To-
n=—s=——"—, (49
g ry—r_

One can show that either<n_ orn>n_ , so thatp,(n) is
non-negative fome[n_,n, ] as it should be. Foh;—»
one obtains the expected respl(n)= &(n—ny) whereng

F=J +npo(n)dn

n

n

PHYSICAL REVIEW &4 021106

=T500/Tg9- FOr small\;, po(n) has algebraic singularities at
the boundaries.. . For small but finite\ ;, the singularities
remain integrable. In the limit ;— 0, po(n) tends to a sum
of two & functions(with appropriate weights according to the
dichotomous procegsocated atn..=r,. /1 .,

Po(n)=p+d(n—n,)+p_sn—n_). (50

The average valua of n can be calculated explicitely. One
obtains

fmn(n—ﬁ)(n—n_)“*‘l(n+—n)“+‘1dn

n_

jm(”—ﬁ)(n—nf)“*_l(m—n)“*_ldn

_n_(n_—MB(ay @ )+(2n_—n)(n, —n_)B(a, ,a_+1)+(n.—n_)?B(a, ,a_+2)

(n_—MB(a,,a_)+(n,—n_)B(a, ,a_+1)

n_(n_—n)+(2n_—n)(ng—n_)+(n.—n_)(ng—n_)

(a_+1)

Ng—n

One can easily show that=n, in the limit A\;—, andn
=p,.n,;+p_n_ for \;=0. Finally one obtains

J— T
N=ng+(p, N,+p_n_—ng)=—, (52)
T+

Wherev-z)\l’l andr=rqo/r,r_=p,/r_+p_/r,. Thus,n
depends monotonously an The expressiol(52) as well as
the formula forpg(n), Eq. (46), have been mentioned with-
out a detailed derivation ifg].

B. The general two-state model

For a general noise proces&) the effective rates are
r_i=f dZ1-r(2)M; '] 'ri(2) ¢o(2), (53

where agaiir 1 :=r,1= —rqq, 2:=I1,= —,,. This yields di-
rectly

B fdz(l—r(z)M;1>‘1r2<z)¢o(z>

(54
fdz(1—r(z)M;1)‘1r(Z)¢o(z)

(a++a,+1). 51

Whether or not this expression can be calculated explicitly
depends on the generatbf, of the noise procesg(t). A

case where the calculation is possible is a kangaroo process.
A kangaroo process is a process where all nonvanishing ei-
genvalues oM, are equal. In that case, E®4) simplifies to

N f dZ1+71(2)]7'r2(2) go(2)

n= . (55)
| da1+ 71 @ o2

The derivation of the last result is not straightforward: One
cannot simply replac®, by — 7~ 1. But it turns out, that the
result is the same, since additional factors in the denominator
and in the numerator cancel each other. Equati®®) is
valid for a dichotomous process as well and yields directly
Eq. (52).

C. Comparison with the Fokker-Planck equation

As already mentioned, the validity of rate equations for
fluctuating potentials is less clear than for fixed potentials. It
is therefore important to compare results for rate equations
with exact solutions of the Fokker-Planck equation. They can
be obtained easily for one-dimensional piecewise linear po-
tentials. This has been shown in detail for periodic potentials
in [12,13. In the present case the procedure is similar, let us
therefore describe it only briefly. For this comparison, we
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restrict ourselves to the stationary distributiong(x)

= [dzp(x,z) and to the mean escape times for the particle

sitting in a minimum of the potential.

We first divide the domain(}, on which the Fokker-
Planck equation is defined, into a set of intervals i
=1,...N,. We assume that the forcef(x,z)=
—dV(x,z)/dx is constant on each intervhl,

f(x,2)="1i(2)

if xel,. (56)

As a second step, we expand the stationary solution of the

Fokker-Planck equation using the eigenbasid/gf,

p(x,z>=po<x>¢o<z>+k§0 PL(X) di(2). (57)

On the intervall;, the Fokker-Planck equation yields

fi(Z)pé(X)dm(Z)+Tp8(X)¢o(2)+go Pr(X)fi(2) pi(2)

+TE Y (X) i(2) — E MPL(X) i(2)=0. (59

This equation can be integrated once with respect teur-
thermore, expression of the forf(z) ¢ (z) can be ex-
panded,

fi(2) pi(2)= E t% b (2). (59)
One then obtains
P+ 2 8 pe () +Tpy(x)=0,  (60)
k'>0
t80po0)+ 2 1 P 0+ TPE(X)=Npi(x),  k>0.
k>0
(61)

The coefﬂments‘f('k, and therefore the final set of equations

PHYSICAL REVIEW E 64 021106

04

mean occupancy n

0.2

0.0

10°

1 5

107 10 10

T

FIG. 1. The mean occupancy in the left minimum of a piecewise
linear, dichotomously fluctuating potential as a function7ofor
variousT . The parameters afe=0.2, 0.4, 0.6, 0.8, 1.0, the average
force takes the values 10, 3/2,3/2, 4/3,—4, —10; Af takes the
values 0, 1/4,—1/4, 2/3, —2, 0. The force jumps ak=—4,
—2,0,3,4. The maximal value of the mean occupancy decreases
with increasingl. The dashed lines are the results from the effective
rate equation.

process that takes the two valued . In this caseN=2 and
N,=6. The plot shows the probability to find the particle in
the left potential well as a function af. It can be compared

to n, which can be calculated from the effective rate equa-
tions. A similar comparison for a different, dichotomously
fluctuating potential was shown [®9]. The results from the
rate equation yield an accurate approximation for sufficiently
large 7, as expected. The intrawell relaxation time can be
estimated from the time the particle needs to reach a mini-
mum of the potential if it starts close to the maximum. In our
units it is somewhat larger than unity. The approximation
becomes better for smaller temperature. The behavior is
similar for other dichotomously fluctuating potentials with
two minima.

For other stochastic processg$) one can draw similar

for p(x) do not depend on the representation of the noisg€onclusions. Let us consider as an example a potential

process(t) as it should be. If the space of functiogg(z)
has finite dimensiolN, Egs.(60) and(61) form is a set ofN

V(x,z)=(V)(x) +zAV(x), where nowz(t) is a sum ofN
—1 dichotomous processes, where each dichotomous pro-

differential equations with constant coefficients, which cancess takes the values1/\N. This means that(t) takes the

be solved explicitely. One obtains a simple eigenvalue probvalues (- N+2n+1)/yN, n=0, ..

.,N with the probability

lem for anN X N matrix, which can be solved numerically. A p =2"N(N). In the limit N—o one obtains an Ornstein-

general solution of this problem is a linear combination ofyhlenbeck procesgl4]. For (V) andAV we take the same
the N different solutions of the eigenvalue problem. The re-values as in Fig. 1. Results for the mean occupancy are

maining problem is thus to determine tNeN coefficients in

shown in Fig. 2 together with the corresponding results from

these linear combinations. They are determined by the nothe rate equation, obtained from E§4). As for the dichoto-

malization ofpy(x), by the continuity ofpy(x), and by the
continuity of p,(x) andpy(x) for k>0. This is a problem of
solving N|N linear equations foN;N unknown coefficients,
which can again be done easily numerically as longNgs
is not too large.

mous process, the results from the rate equation agree quite

well with the results from the Fokker-Planck equation for not
too small values ofr.

Similar results can be obtained for other noise processes

as well. For kangaroo processes, the mean occupancy has

In Fig. 1 we show explicit results for a one-dimensional been obtained explicitely, Eq55). The corresponding re-

dichotomous two-state model. The potentidf(x,z) sults for the mean occupancy are similar to what has been
=(V)(x)+zAV(x) has two minimaz(t) is a dichotomous obtained so far. If one takes, for instance, kangaroo processes
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rates as long as is not too small. Whether or not E¢R9)

can be used to calculate the effective rates analytically de-
pends on the structure of the problem. For complicated noise
processes or for potentials with many mininfiag can only

be obtained numerically.

IV. MATHEMATICAL ASPECTS

In the main part of this work we investigate the stationary
solution of a Fokker-Planck equatidB) with a fluctuating
potential, assuming that such a stationary solution exists. The
aim of this section is to prove the existence of a stationary
solution under certain assumptions that will be sufficient for
our purpose. For the special case of a one-dimensional, di-
chotomously fluctuating potential, Pechukas and Ankerhold

T [10] proved the existence of a stationary solution under some

FIG. 2. The mean occupancy in the left minimum for a fluctu- special assumptions on the potentia!. The result Qf this sec-
ating potential as in Fig. 1. andAf are the same as in Fig. T, tion can be understood as a generalization of their results.
=0.4. The different curves are for sumshf- 1 dichotomous pro-
cessesN=2, ... ,6. ForincreasingN the maximum of the curve is A. The discrete case
shifted to t_he left. The dashed lines are the resultg f_rom _the effective Let us first discuss the discrete case, which is very simple
rate equation, the results fof=4,5,6 cannot be distinguished.

mean occupancy n

but shows some interesting aspects. Let us assume that a

system hadN states and that it can move from one state to

with the samegy(z) as for the sums of dichotomous pro- another. The behavior is described by a rate equation

cesses in Fig. 2, the quantitative results are almost the same,

they differ by less than 1%. ﬂzz Foo 62)
The results in Fig. 2 show that already for smisllone dt 4 1Py

obtains essentially the result for the Ornstein-Uhlenbeck pro-

cess. The convergency to the Ornstein-Uhlenbeck process We now assume that the rates fluctuate betwiéedifferent

very fast. ForN>6 the curves lie on top of the curve for statesa=1, ... N;. The fluctuation between these states is

N=6. Clearly, the convergency depends on the parametedetermined by a matrif =(m,p)q p-1,... n, that contains

of the system. For smaller temperatures we observe a slowetie rates for the fluctuations. The probability, of the fluc-

convergency. tuating system to be in the state given ibgind « is deter-
It is possible to consider potentials with more than twomined by

minima as well. The corresponding rate equations describe
fseyviterznr?:in\gv;tr;rr]réoree than two states. For S|mple_ systems \_Nlth dpia =S i p S Mg 63
, €.9., a dichotomously fluctuating potential, dt T et 7 BFip
one can again compare the results from the Fokker-Planck
equation with the results from the rate equations. The generithe stationary solution of this equation, if it exists, must be
behavior of such systems is again described by the effectivihe eigenvector of the matrix

Ri+myl  myl mygl - My, |
Mol R, + my,l myal
R= Mgyl Myl R3+mg3l : (64)
: ’ My, -1, |
my 1 my, N-1l Ry Hmy |

to eigenvalue 0. Herd,is theNX N unit matrix. The matri- andr;;,=0 fori#j. FurthermoreM is a rate matrixm,,,
cesR, are rate matrices. As a consequence, =—3g24Mg ., andm, ;=0 for a# B. Therefore, all the

off-diagonal matrix elements &t are non-negative. | assume
that starting from some state of the system, any other state

Mia=— 2 Mia (65) . . L .
j#i can be reached dynamically. This means fRét irreducible.
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Then, one can introduce a constanthat is larger than the d
modulus of any diagonal matrix element lgf Let | be the H(t)=§ f d°X P14 IN(P1a/P2a)- (68)
N,N X N,N unit matrix. Then the matriR-+cl is irreducible

and has only positive matrix e'ef_"e”ts- As a consequence, thﬁ’]is function is often called Kullback information and has
Perron-Frobenius tAheorAem applies. The eigenvalue with thﬁeen introduced by Kullbackl5,16,. By standard methods
largest modulus oR+cl is nondegenerate, real, and posi- gne can show thaf) H(t)=0 and(ii) dH/dt<0. As a con-
tive, and the corresponding left and right eigenvectors haV@equenceH tends to zero fot—o and thereforep;,/p,
only non-negative entries. Now, the vector (1,1.,1) is @  tends to 1. The proof is similar to the one presented in chap-
left eigenvector oR with the eigenvalue. Thereforecisthe  ter 6 of[17]. First, one shows

eigenvalue with the largest modulus &f+ci. This shows

that 0 is the eigenvalue & with the largest real part and q Pi« Pia Pia

that its right eigenvalue has only non-negative entries. It is H(t)=§ f d°X Pz Elna_ @‘Ll

the stationary solution of Eq63). One can show that any

solution of the rate equatiof®63) tends to the stationary so- )

lution for t—s oo, which follows fromr Inr—r+1=0 for r=0. Now, one can
This proof is very simple, it is based on the fact that rate@lculate

are non-negative and on the Perron-Frobenius theorem. Let

us now take a look at the original Fokker-Planck equation dH d

(5). For simplicity, we discuss only the case where the po- EZE f d“x

tential fluctuates betweeN, different statesz takesN, dif-

ferent values. Let us assume that the Fokker-Planck equation D f dy

=0, (69

dpla dea
at N(P1a/P20) = (P1a!P2a) =51~

is defined on a finite open domati with reflecting bound- (LaP1a)IN(P1a/P2s)

ary conditions on the boundawf}. If one introduces some

kind of coarse graining, i.e., a partition 6f into N small Pio dPoy
parts(); , it is then possible to apply the above result and a +% MapPpIN(P14/P2a) = D, d }
stationary solution exists. This holds for any partition{f ¢

into small parts. Therefore one should expect that a station- d +

ary solution of the Fokker-Planck equatitB) exists as well. = ; f d°X| Pral o IN(P1a/P2a)

We will show this in the next section using a different ap-
proach. One has to show that the Fokker-Planck operator has P1o dPoy
a unique right eigenstate with eigenvalue 0 and that any +§ maﬁpﬁln(pla/pza)—g dt }
solution of the Fokker-Planck equations tends to that solution “
for t—o. Since we are dealing with a differential operator ) i
and not with a matrix, it is not possible to use a Perron-T1he first term may be evaluated using
Frobenius type argument.

(70

2
p2a p201 =
B. The continuous case LZ IN(P14/P24) = p_LL(pla/pZzy) _TT[V(pla/pZa)]z-
a la

Let us first show that the ratio of any two solutions of the (71
Fokker-Planck equation tends to unity in the limit-co. As
for the discrete case we assume thagkesN, valuesz,,  Thjs yields
a=1,... N, and we let

2 —p (X dH -
P20 D= RalX D, (60 T TS [ % TP 10 T

Furthermore, we again assume that the Fokker-Planck equa-

tion (5) is defined on a finite open domafd with reflecting +f d ( Pia Pia
boundary conditions on the boundamf). The Fokker- d XQEB Map plﬁlnph Papp | (72
Planck equation can be written in the form

The first term is clearly negative or 0. To investigate the
=V[VV,(X)+TVIp,+ > MusPp second term, let us introduce
B

ot

A, =08,5+ €m (73
af af af

:Lapa—’—% ma,BpB' (67)

wheree should be sufficiently smalle(” > max,|m,,|, | will

Let p1,. P2, b€ two positive solutions of this equation. We take the limite—0 below). Let bia=EﬁAa3piB. One can
define show that
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P IE) ary solution of the Fokker-Planck equation with a fluctuating
f ddx >, plalnﬂ—ﬁlalnA—M potential under some general conditions and thereby gener-
@ P2a P2q alize a result published recently by Pechukas and Ankerhold
- [10].
_ ddxz A |nplﬁp2a As a direct consequence of our calculations, one can in-
B P apP1p pzﬁf)la vestigate where rate equations can yield good results and

where not. This is important since in many applications,
g P24P 14 mainly in biological situations, rate equations are used for a
ZJ A% A,gpigl 1————| =0. (74 direct comparison with experiments. For instance, dynamical
“p P1pP2a properties of membrane proteins are often described and in-
Expanding the left-hand side in powers @fone obtains vestigateq by rate equatior)s. An interesting and_we_ll—known
example is the effect of time-dependent electric fields on
P1a D1 such proteins. It has been discussed it detail by Astumian and
f d%> maB( pm|n——p25—)$0 (79 Robertson[18] using rate equations. In such systems one
“h P2a P2a observes strong amplifications of weak signals. M3
suggested that the reason may be stochastic resonance. Krug-

solution of the Fokker-Planck equation is positive. If the po-"kOY and Dertinger20] gave a qu:_;1I|tat|ve d|scu§S|on Sup-
porting the occurence of stochastic resonance in such sys-

tential V,(x) is bounded within the domaif, and ifQ is e mg using a time-dependent potential, but a description

connected, this limit yields the unique stationary solution Ofusing rate equations would have been possible as well. As
the Fokker-Planck equation since the Fokker-PI_anck operatofiready mentioned, Petracakt al. [11] studied the effect of

does not depend on time. This shows the existence of thgmne-dependent electric fields on membrane proteins experi-
stationary solution of the Fokker-Planck equation. mentally. As a specific example they used d Khannel.

They measured various stationary probabilities and dynami-

V. OUTLOOK AND CONCLUSIONS cal quantities to describe the statistics of the transitions in

One main result of this paper is that the overdamped mo‘ghese systems. As an interesting result they found a phase

tion of a Brownian particle in a fluctuating potential can beaﬂt'c'pat;‘c.);: One of éhte ttrﬁnsnt!onsl OCC_II_“'rrlS with a ne%azlr\]/ e
described by kinetic rate equations(ij the potential fluc- phase shiit compared to the stimulus. They compared their

tuations are slower than the relaxation of the particle withinSXperimental results with numerical resuilts for a simple two-

a minimum of the potential and ifi) the positions of the state Markov model, described by a rate equation. The rate

minima of the potential do not fluctuate. For temperaturesequat'grt‘f] ??hnot;hthhthe ptr:_alse _an?mpa.uon. ;—Tﬁ autho:js
small compared to typical barrier heights of the potential, thg?fgued that this etiect has a biological onigin and discusse

guantitative agreement of the two different descriptions jg/arous possible hypotheses to explain it.

very good if one calculates stationary or quasistationary From our discussion it is clear that rate equations do de-

properties. This shows that the long-time behavior of ascribe the stationary or long-time behavior of a system quite

Brownian particle in a fluctuating potential has universalwe”' Indeed, the stationary or quasistationary properties cal-

properties and does not depend on the details of the potentiﬁwated by Petracchet al. [11] agree very well with their

but only on the rates for the transition over the various ﬂuc_experimental findings. The phase anticipation is a dynamical

tuating barriers. This is important, since in many realisticeﬁeCt that occurs on shorter time scales. Therefore one can-

situations details of the potential are not known. For in-Nnot expect that it can be ot_)talned using rate equatlons._Our
plculatlons suggest that this effect depends on the details of

stance, in the case of a cell surface receptor or some oth . . .
e potential and not only on the rates, which are determined

and thereforelH/dt<0. The limitp,(x,t—) of a positive

rotein in a cell membrane, one knows eventually something . . . ; ; .
P y ainly by the barrier heights. The main problem is that in the

about the stable or metastable conformations of the protein, f i b tein th tential that d
but (almos} nothing about the potential that describes theCaS€ O a Specific membrane protein he potential that de-
scribes the dynamics is not known. Therefore it is not pos-

energy of the deformations of the protein. Even if the poten- ible t del the K ch | usi time-d dent
tial is known, it is often simpler to solve a kinetic rate equa—sI € 1o model the 1K channel using a ime-dependent po-
tion instead of a Fokker-Planck equation. tential. But it would be of g_eneral interest to investigate

Starting from the kinetic rate equation with fluctuating whether or not and under which conditions a Brownian par-

rates, we derived a formula for effective rates that holds foficlé in a time-dependent potential shows the described phase

general noise processes. This formula yields directly infor-"’mtiCipaﬂon' This is clearly beyond the scope of the present
aper.

mation on the stationary and long-time properties of the sysp

tem. It can be evaluated for many noise processes. The spe-

cial case of a dichotomous two-state system can be solved

exactly and one obtains the distribution functions for the | wish to thank H. Dertinger for various interesting dis-

occupancy of the two states. cussions on the effect of weak electromagnetic fields on
As a byproduct, we could show the existence of a stationeells.
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